Difference between revisions of "Example:compound nomograph 2"
From Pynomo
(→Compound nomograph example 2) |
(→Source code of simple compound nomograph example) |
||
Line 45: | Line 45: | ||
along with this program. If not, see <http://www.gnu.org/licenses/>. | along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
""" | """ | ||
− | from nomographer import * | + | from pynomo.nomographer import * |
# N | # N |
Revision as of 21:08, 22 November 2008
Compound nomograph example 2
In this example we construct compound nomograph for solving equation
[math]q = u^v + w. \,[/math]
This example is taken from [1]. The equation is split into two equations that each are blocks:
[math]\log (r) = v \log (u) \,\,\,\,\,\,\,[/math] | type 2 |
[math]q-w-r=0 \,\,\,\,\,\,\,[/math] | type 1 |
Because one equation has r and other log(r), we need to use ladders, that are type 6. Ladders are not generally elegant choice and we use them because there is no other choice (if we forget "contour" = type 5.)
- ↑ Epstein: Nomography, p. 66
Simple example
Compound nomograph: example 2 | |
---|---|
![]() |
|
Generated portable document file (pdf): | File:Ex compound nomo 2.pdf |
Source code of simple compound nomograph example
""" ex_compound_nomo_2.py Compound nomograph: q = u**v+w Copyright (C) 2007-2008 Leif Roschier This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from pynomo.nomographer import * # N u_params={ 'u_min':1.0, 'u_max':10.0, 'function':lambda u:log(u), 'title':r'$u$', 'tick_levels':3, 'tick_text_levels':1, 'tick_side':'left', } v_params={ 'u_min':0.1, 'u_max':20.0, 'function':lambda v:1.0/v, 'title':r'$v$', 'scale_type':'log', 'tick_levels':0, 'tick_text_levels':0, 'extra_params':[{ 'u_min':0.1, 'u_max':0.9, 'tick_levels':3, 'tick_text_levels':2, 'tick_side':'left' }, { 'u_min':1.0, 'u_max':20.0, 'tick_levels':4, 'tick_text_levels':2, 'tick_side':'right' } ] } R_params={ 'u_min':1.0, 'u_max':10.0, 'function':lambda r:log(r), 'title':r'', 'tick_levels':0, 'tick_text_levels':0, 'tag':'ra', } block_params_1={ 'block_type':'type_2', 'width':10.0, 'height':10.0, 'f1_params':u_params, 'f2_params':v_params, 'f3_params':R_params, } # Ladder R_params_a={ 'u_min':1.0, 'u_max':10.0, 'function':lambda u:log(u), 'title':'r', 'tick_levels':3, 'tick_text_levels':2, 'tick_side':'left', 'tag':'ra', } R_params_b={ 'u_min':0.0, 'u_max':10.0, 'function':lambda u:u, 'title':'r', 'tick_levels':3, 'tick_text_levels':2, 'tag':'rb' } block_params_2={ 'block_type':'type_6', 'f1_params':R_params_a, 'f2_params':R_params_b, 'width':5.0, 'height':10.0, 'mirror_x':True, } # type 1: q-w-r=0 r_params_c={ 'u_min':0.0, 'u_max':10.0, 'function':lambda u:-u, 'title':r'$r$', 'tick_levels':2, 'tick_text_levels':1, 'tag':'rb' } w_params={ 'u_min':-10.0, 'u_max':10.0, 'function':lambda u:-u, 'title':r'$w$', 'tick_levels':2, 'tick_text_levels':1, } q_params={ 'u_min':0.0, 'u_max':10.0, 'function':lambda u:u, 'title':r'$q$', 'tick_levels':2, 'tick_text_levels':1, } block_params_3={ 'block_type':'type_1', 'width':10.0, 'height':10.0, 'f1_params':r_params_c, 'f2_params':w_params, 'f3_params':q_params, 'mirror_x':False } main_params={ 'filename':'ex_compound_nomo_2.pdf', 'paper_height':13.0, 'paper_width':20.0, 'block_params':[block_params_1,block_params_2,block_params_3], 'transformations':[('rotate',0.01),('scale paper',)], } Nomographer(main_params)