Example:compound nomograph 2
From Pynomo
Revision as of 19:17, 21 October 2009 by WikiSysop (Talk | contribs) (→Source code of simple compound nomograph example)
Compound nomograph example 2
In this example we construct compound nomograph for solving equation
[math]q = u^v + w. \,[/math]
This example is taken from [1]. The equation is split into two equations that each are blocks:
[math]\log (r) = v \log (u) \,\,\,\,\,\,\,[/math] | type 2 |
[math]q-w-r=0 \,\,\,\,\,\,\,[/math] | type 1 |
Because one equation has r and other log(r), we need to use ladders, that are type 6. Ladders are not generally elegant choice and we use them because there is no other choice (if we forget "contour" = type 5.)
- ↑ Epstein: Nomography, p. 66
Simple example
Compound nomograph: example 2 | |
---|---|
![]() |
|
Generated portable document file (pdf): | File:Ex compound nomo 2.pdf |
Source code of simple compound nomograph example
""" ex_compound_nomo_2.py Compound nomograph: q = u**v+w Copyright (C) 2007-2009 Leif Roschier This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from pynomo.nomographer import * # N u_params={ 'u_min':1.0, 'u_max':10.0, 'function':lambda u:log(u), 'title':r'$u$', 'tick_levels':4, 'tick_text_levels':3, 'tick_side':'left', 'scale_type':'linear smart', } v_params={ 'u_min':0.1, 'u_max':20.0, 'function':lambda v:1.0/v, 'title':r'$v$', 'scale_type':'log', 'tick_levels':0, 'tick_text_levels':0, 'extra_params':[{ 'u_min':0.1, 'u_max':0.9, 'tick_levels':3, 'tick_text_levels':2, 'tick_side':'left' }, { 'u_min':1.0, 'u_max':20.0, 'tick_levels':4, 'tick_text_levels':2, 'tick_side':'right' } ] } R_params={ 'u_min':1.0, 'u_max':10.0, 'function':lambda r:log(r), 'title':r'', 'tick_levels':0, 'tick_text_levels':0, 'tag':'ra', } block_params_1={ 'block_type':'type_2', 'width':10.0, 'height':10.0, 'f1_params':u_params, 'f2_params':v_params, 'f3_params':R_params, 'isopleth_values':[[6,0.5,'x']] } # Ladder R_params_a={ 'u_min':1.0, 'u_max':10.0, 'function':lambda u:log(u), 'title':'r', 'tick_levels':3, 'tick_text_levels':2, 'tick_side':'left', 'tag':'ra', } R_params_b={ 'u_min':0.0, 'u_max':10.0, 'function':lambda u:u, 'title':'r', 'tick_levels':3, 'tick_text_levels':2, 'tag':'rb' } block_params_2={ 'block_type':'type_6', 'f1_params':R_params_a, 'f2_params':R_params_b, 'width':5.0, 'height':10.0, 'mirror_x':True, 'isopleth_values':[['x','x']] } # type 1: q-w-r=0 r_params_c={ 'u_min':0.0, 'u_max':10.0, 'function':lambda u:-u, 'title':r'$r$', 'tick_levels':2, 'tick_text_levels':1, 'tag':'rb' } w_params={ 'u_min':-10.0, 'u_max':10.0, 'function':lambda u:-u, 'title':r'$w$', 'tick_levels':3, 'tick_text_levels':1, } q_params={ 'u_min':0.0, 'u_max':10.0, 'function':lambda u:u, 'title':r'$q$', 'tick_levels':3, 'tick_text_levels':1, } block_params_3={ 'block_type':'type_1', 'width':10.0, 'height':10.0, 'f1_params':r_params_c, 'f2_params':w_params, 'f3_params':q_params, 'mirror_x':False, 'isopleth_values':[['x',3,'x']] } main_params={ 'filename':'ex_compound_nomo_2.pdf', 'paper_height':13.0, 'paper_width':20.0, 'block_params':[block_params_1,block_params_2,block_params_3], 'transformations':[('rotate',0.01),('scale paper',)], } Nomographer(main_params)